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Abstract--The problem of convective flow in multiple immiscible liquid layers in a differentially heated 
shallow rectangular cavity with rigid and insulated upper and lower boundaries is considered. As a model 
for multiple layers, a three-layer system featuring two non-deformable interfaces is investigated. The 
method of matched asymptotic expansions is used to determine the flow in the two distinct regions: the 
core region characterized by parallel flow; and the end-wall regions where flow turns around. The driving 
mechanism for convection is buoyancy. To study mechanical coupling across interfaces between 
immiscible liquids, the influence of varying encapsulant viscosity is investigated. 
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INTRODUCTION 

During solidification of electronic materials, convective flow in the melt, especially time-dependent 
convective flow, can have undesirable effects on electronic properties of the solidified material. 
Pulling crystals of a volatile material, or a material with a volatile component, requires stringent 
control of the stoichiometry. To alleviate some of these problems, a technique which covers the 
surface of the material to be pulled with an amorphous liquid glass was developed. As a 
demonstration of the viability of this technique, germanium, PbTe and PbSe single crystals were 
encapsulated with molten B203 as the confining liquid (Metz et al. 1962). This new liquid 
encapsulation method has since been used to pull GaAs crystals (Johnson 1975). Recently the idea 
of liquid encapsulation was applied to float zone processing of GaAs in space (Barocela & 
Jalilevand 1987). 

The development of improved crystal growth techniques has inspired the study of convection 
fluid physics in multiple liquid layers. In order to provide timely fluid mechanics data, several 
scientists have studied basic fluid dynamics of differentially heated immiscible double liquid layers 
with heating parallel to the interfaces. 

Villers & Platten (1988, 1990) performed a one-dimensional analysis of convective flow in a 
two-layer system. They assume that in both layers a parallel flow develops in the mid-section of 
the cavity, where vertical velocities are zero. A key assumption in their analysis is that the 
temperature gradient across the cavity is constant. Prakash et al. (1993; Prakash & Koster 1993) 
performed a one-dimensional analysis of a mechanically decoupled "free-free" single liquid layer 
and of three immiscible layers using the same assumptions as Villers & Platten (1990). Wang et al. 

(1991) performed a one-dimensional analysis to investigate the differentially heated infinite 
two-layer system with constant heat flux end-wall conditions. Ramachandran (1990) and Doi & 
Koster (1993) utilized finite-difference algorithms and Fontaine & Sani (1992) used the finite- 
element computer code FIDAP to simulate the flow in two immiscible liquid layers with a free 
surface. Viviani & Golia (1992) studied Stokes flow in two rigidly contained immiscible liquid layers 
featuring one (liquid-liquid) interface. 

tAuthor for correspondence. 
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The multiple liquid layer problem is an extension of the extensively studied problem of natural 
convection in a differentially heated cavity with one liquid, which is either completely confined or 
features a free surface. The names of Batchelor (1954) and Gill (1966) are associated with the 
earliest analytical investigations. Numerous investigators have studied this "cavity" problem 
numerically. We refer to the calculations of DeVahl Davis (1968) and Carpenter & Homsy (1989) 
for an extensive bibliography. 

For shallow cavities, with height much smaller than length (aspect ratios d/l ~ 1), direct 
numerical modeling of the flow becomes expensive. However, analytical progress is possible with 
asymptotic methods. Batchelor (1954) considered the problem of a single liquid for both small and 
large Grashof numbers (Gr). For small Gr, his solution is an asymptotic expansion about the purely 
conductive, constant temperature gradient solution. For large Gr, he predicts an isothermal core, 
with thin boundary layers alo~g all four sides. Gill (1966) studied the large Gr problem for the 
case of large aspect ratios (d/l >> 1). He predicts a flow with thin boundary layers along the heated 
side walls where almost all the temperature drop occurs, and a core region where temperature is 
not isothermal as in Batchelor's solution, but is a function of the vertical coordinate. 

The problem of convection in a shallow cavity with d/l ~ 1 was exhaustively investigated by 
Cormack et al. (1947a, b) and Imberger (1974), hereafter referred to as CLI. In part I of their 
investigation, they present an asymptotic theory valid in the limit d/l~O, with a fixed Gr. 
Experimental and numerical results presented in parts II and III of their investigation show 
excellent agreement with theory. CLI showed that convective flow in a shallow rectangular cavity 
can be divided into three, horizontally adjacent regions: the central, or "core", region; and the two 
end regions where flow turns around. 

Flow in the core region is shown to be parallel to the interfaces, i.e. the vertical velocity 
components are zero. Also, the horizontal temperature profile in the core region is linear at all 
vertical locations. Therefore, the entire temperature drop occurs across the core region and the end 
regions serve to turn the flow around and play a passive role with regard to heat transfer. This 
is in contrast to the case where most of the temperature drop occurs in the vertical thermal 
boundary layers at the end walls, while the horizontal temperature gradient in the core region is 
small and negligible. 

We utilize CLI's theory to study natural convection in three immiscible liquid layers, excluding 
thermocapillary effects. Three liquid layers are considered to be representative of a multiple-layer 
system. The theory can be easily extended to four or more layers, although the physical features 
of mechanical coupling between layers will not be significantly altered. Thermocapillary effects are 
discussed in the companion paper (Prakash & Koster 1994, this issue, pp. 397-414). 

The multiple-layer problem is characterized by mechanical and thermal coupling across liquid 
interfaces. Mechanical coupling between liquid layers occurs due to the transfer of momentum 
across the interfaces. Transfer of momentum occurs via the continuity of the interface tangential 
velocity and the balance of shear stress across the interface. Together these two conditions comprise 
the "no-slip" condition at a liquid-liquid interface. It is this coupling between liquid layers that 
distinguishes this analysis from that of CLI. 

M A T H E M A T I C A L  F O R M U L A T I O N  

We consider the fluid dynamics of a system of three immiscible liquid layers in a shallow (aspect 
ratio d/1 ~ 1), rectangular, two-dimensional cavity. The cavity has length 1 and d is the height of 
the middle layer. The three layer heights are not necessarily equal. However, they are all of the 
same order, and each layer aspect ratio is considered small. The cavity height is, therefore, of order 
3d, which is considered to be much smaller than the cavity length. The cavity is differentially heated 
from the side, while the top and bottom boundaries are rigid and thermally insulated. A sketch 
of the geometry being considered is shown in figure 1. Convective flow results from horizontal 
differential heating, which produces a temperature gradient parallel to the two interfaces, while 
gravity is oriented perpendicular to the interfaces. Deformation of the interfaces is considered to 
be negligible in terrestrial gravity because of the strong stabilizing influence of hydrostatic forces, 
particularly for the weak convective flows considered here. This assumption is justified by 
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experiments on buoyancy-induced convective flow by Nataf et al. (1988), who did not observe 
significant interfacial deformations. 

The governing equations of fluid flow in each liquid layer with the Boussinesq approximation, 
and the introduction of a stream function (6) and vorticity (co) are: 

_ O T  a(co, 6) vV~ + [1] 
a(x, y) g ~ x  ' 

O(O, 6)  = xV20 [2] 
O(x , y )  

and 

V21// = --(D, [3] 

where 0 is temperature and v, x and ~ are the kinematic viscosity, the thermal diffusivity and the 
coefficient of thermal expansion of the fluid, respectively. The acceleration due to gravity is g, and 
the bracket-operator (..) is defined as 

O(A, B)  _ OA dB OA OB 
m 

O(x , y )  Ox ay Oy Ox 
[4] 

The governing equations for each layer are scaled using the thermophysical properties of the middle 
layer, and the applied temperature difference AT. The length of the cavity 1 and the middle-layer 
height d are used to scale the x and y coordinates, respectively. The continuity equation suggests 
that the appropriate vertical velocity scale is v ,~ (d/l)u. The following velocity, length and 
temperature scales are used: 

bl* (gO~ATd2) (d)  (go~ATd 2) (¢)2 
= - u; v * =  v [5] 

and 

x * = l x ;  y * = d y ;  T * = A T O .  [6] 

Using this scaling, the non-dimensional governing equations in a layer [i = t (top), m (middle), or 
b (bottom)] become 

GrA 2~(co%6i) v i(A c~:co i d2coi\| O0 i 
_ 2 _ _  + _ _  ~ ' - - ,  [ 7 ]  

d(x, y) _ c~x 2 ~y2 //4- ~X 

26321//i ~26i 
= - c o '  [8] A -~--.Tx2 4 c3y 2 

' l  

Cold 

d t top layer 
b d I m g ~ middlelayer 

' d t~ bottom layer 

L J 
F r. q 

Hot 
~ x  

Figure 1. Sketch of the shallow cavity with three immiscible liquid layers. 
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and 
0(0', 0 i) ( ~20i ~20i~ 

GrPrA2 8(x, y)  x i ,  A2 - ~ + ~ - ~ ) ,  [9] 

where the non-dimensional parameters, based on the middle-layer thermophysical properties, the 
middle-layer height d and the cavity length l, are defined as 

g~ATd 3 v , A . [10] Gr - - - v 2  ; Pr = -  ; Ra = GrPr _ go~ATd 3 _  . =-d 
~c vx 1 

The parameters Gr, Pr, Ra and A refer to the Grashof number, the Prandtl number, the Rayleigh 
number and the aspect ratio, respectively. Capitalized superscripts are used to denote ratios of the 
thermophysical properties of the top (t) and bottom (b) layers with respect to the middle (m) layer, 
i .e.  

V"=--,Vb" V " r = 5 .  [11] 
V m 1~ m 

Ratios of other thermophysical properties and layer heights are denoted similarly. 
The boundary condition at the four rigid side walls is the no-slip condition. A zero heat flux 

condition applies at the insulated top and bottom boundaries. At the cold and hot side walls an 
isothermal condition applies. These conditions take the form: 

at y = - d  s, 0 b = 0 b = 0~ b = 0; at y = 1 + d T, 0 t=  0~, = 0t,.. = 0; [12] 

and 

a t x = 0 ,  0 = 0 x = 0 ,  0 = 0 ;  a t x = l ,  0 = 0 x = 0 ,  0 = 1 .  [13] 

At the two interfaces, the no-slip conditions are a continuity of horizontal and vertical velocity and 
tangential shear. Also, temperature and heat flux are continuous across the interfaces. The 
interfacial boundary conditions are: 

at y =0 ,  

~S(oby. _A-0.,.,.)" u =(0m. --A2dtm ....... ]" 0 b = o  m=-0; 0. b=0m',., [141 

0 b :  0m;  B b 2 0~, = 0 m [15] 

and 
a t y = l ,  

2 t ) . .  42dim); 0 m =  uT(0<,.,.- A 0 .... = ( 0 m - ,  , .  ,.~ 0',- = 0; 0 ;  = 0m: [16] 

0 t = 0m; 0T ~t 0,. = 0m; [171 

where 2 is the thermal conductivity of the referred liquid. 
Our objective is to solve the above system of equations in each of the three layers with the 

applicable boundary conditions in the limit A--*0. 

Flow in the Core Region 

The stream function is expanded using the small parameter A as follows: 

0 '=  0'o+ AO'; + A201+ " " .  [t8] 

Similarly, the vorticity co and the temperature 0 are also expanded using the small parameter A. 
An ordered set of equations is obtained by substituting the field variable expansions into the 
governing equations. General solutions of the ordered set of equations lead to a parallel flow in 
the core region at all orders: 

O;(x, y ) =  K i ( ~ i ( y )  [19] 
\v  / 

and 

O'(x ,y)=K'~x + K'~+GrPr(K'~) 2 A2g'O,), [20] 
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where 

and 

a n d  

and 

K~ = C] + AC~z+ A2C~ + A3C~4+ ... 

K~2 = C*' + AC*' + Azc*' + A3C*' + . . . ,  

' - + A~2+A~y  A'~) f ( Y ) - ( ~ 4  A~4Y---6 + 2 + 

[21] 

[22] 

[23] 

'" " - - f  Y5 A~Y4 Y---6 A~Y---2 + A  A~o) [24] gu,~-~,l~-d+ 4~+A~ + iy + . 

The 12 constants A~ to A~ are determined by satisfying the boundary conditions on the 
streamfunction. The temperature continuity boundary conditions require that 

K~ = K,; KI= K2, 

Abo = A~ =_ O 

vTKT( 1 A~ _~ A m ) ( 1 A~ ? ) 
2 A~' - + A ~ +  + +AI  

A~=--D- f f 6 + ~  -+ + 5  -+  ~ T " 

and 

[25] 

[26] 

and 

C* = C4 GrPr gi(y)dy [32] 
- 7 -  ~ 

Flow in the End Region 
To capture the flow pattern in the end regions, we stretch the coordinates in the vicinity of the 

cold wall as follows: 

X 
A '  r /=y .  [331 

( ~ +  Kz)+GrPr(KI)2 ~ ~i ,.+, 1 
\ - -  / 

where y+i and y i are the limits of the upper and lower vertical position for each layer (i). 
Therefore, 

] CI t-C* 1 C3 GrPr(CI)2~L~J. , . , -7 g~(y)dy -~-- = ~ ;  C 2 = - 2 C ~ ' ;  C~ ' -  2 D [31] 

This leads to 

The coefficients C, and C* must be determined by matching the core solution with the end-wall 
solution. A relationship between 6", and C* can, however, be found by using the symmetry property 

i l 
- -  0 , y d y  = - [ 2 8 ]  
D d-aB 2 '  

where D is the total non-dimensional depth of the system: 

D = d B+ 1 + d T. [29] 

[27] 
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With this coordinate transformation, the governing equations become 

2 0 ( ~ i , q s ' )  , 2 i i a0 i  
G r A  ~(~,r/) = v A V ~ o  +~ ~--~, 

V2~O i = _ ~o' 

and 

[34] 

[351 

The matching condition at this order is 
as ~ ~--+ ~ ,  

V20i~ = O. [40] 

0~ = C,~ + C*. [41] 

In order to satisfy the boundary conditions and the matching condition, 

C * = 0 ; ~ 0 ' i = C , ~  =~.  [42] 

With this O(A) solution for temperature, the governing equations for the stream function and 
vorticity become: 

= ' = - V2~9~,. [431 Vt ' 

These equations are to be solved with the previously defined boundary conditions and the following 
matching condition: 

as  ~ t----~ oo, 

~g = C, ~.f'(r/) = ~.f'(r/); ~b~ = O. [44] 

The biharmonic equation [43], with the boundary conditions and the matching conditions, is solved 
numerically. 

GrPr  A 8(0', q ' )  x,V20," [36] 
a(~,.) 

In the end-wall regions, the wall boundary conditions must be satisfied and the solution must match 
the core flow away from the walls. As with the core region, the governing field variables in the 
end regions are also expanded using the small parameter A. Solutions at the two end walls will 
be similar, therefore we restrict ourselves to the solution near the cold wall (4 = 0; 0 = 0). 

Solution at 0(1) 

Substituting the expansion into the governing equations leads, at O(1), to: 

aG 
V20~ = O; ~ = O. [371 

In addition to satisfying the boundary conditions, the solution must match the core solution, which 
requires that 

as ~ ~--+ oo, 

o~ = c , * .  [38] 

The only possible solution satisfying [37], the boundary conditions and the matching condition is 

C* = 0; ~ 0~ = 0. [39] 

This also implies that Cj = I. 

Solution at 0(,4) 

Using the O(1) solution, the governing equation for temperature at O(A) becomes 
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Solution at 0(.4 2) 
In order to make numerical computations independent of Gr and Pr, it is convenient to introduce 

the following notation: 

0~ = GrPr 0~ i. [45] 

Upon substitution of the lower-order solutions, the governing equation for temperature at this 
order becomes 

WO~i - l 0~0~ [46] 
x i Or/ 

The matching condition for 02 is 
a s  ~ i----~ oo,  

• 0~ i 
0~ = C* + GrPr(C, )2 ~5~v~g,(q). [47] 

The constant C* is unknown and is to be determined. Therefore, the following condition is imposed 
instead: 

a s  ~ ~----~ oo,  

00~ 0. [48] 
0~ 

The harmonic problem for 02 with the previously defined boundary conditions and the above 
matching condition, is solved numerically. Using the solution for 02, the constant C; is determined 
by integrating [47] as follows: 

C* = D , t_.,-' 0~ d r / -  GrPr - v,x---~ , , '  g(r/) dr/ . [49] 

Therefore, from [31], 

C3 - 2 G r P r  ( I ~ + ' ) y  
- - -  0 ~  d r /  . [ 5 0 ]  

O ~ \ a ~  

Integrating [46] over the depth of the cavity and using the rigid and insulated boundary conditions 
at the top and bottom leads to: 

02 ~/+t 

This differential equation is solved with the following boundary conditions obtained from [13] and 
[ 5 0 ] :  

at ~ =0 ,  

and 
a s  ~ I---* 00,  

The only possible solution is 

Therefore, 

( f / )  ~.. , 0;' d~ = 0 [521 

o , . ,  
• -, 0~' dr/ = - C3 2GrP----~" 

~(ff~'O~dr/)=O with C3~0.  [54] 

C* = - G r P r  vi~d]" , g(r/) dr/. [55] 

IJMF 20:2--L 
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Next, we proceed to the solution for ~k~. As before, for convenience and to make the numerical 
computations independent of Gr and Pr, we introduce the following notation: 

~'i = GrPr ~ ~' + Gr ~9 ]". [56] 

With this notation, the governing equation for ~O t leads to the following two problems: 

o~i OOt2 ̀ " V4~y,.,i = l 0(-V2~b~,tO~) [57] 
V4q~"~- v' ~ ' ' v ~ 0(~,  ,7) 

The matching condition for 6~ using previously obtained results is 
as ~ I----~ o0, 

q,', = o; q,',~ = o. [58] 

The two biharmonic problems with homogeneous boundary conditions are solved numerically. 

S o l u t i o n  a t  O ( A  s) 

As before, we introduce the following notation to make the solution independent of Gr and Pr: 

0~ Or2pr 2 'i 2 "i = 03 + Gr Pr 03 [59] 

and 

C 4 = Gr2P& C~ + Gr2pr C~. [60] 

Using the lower-order solutions and the above notation, the governing equation for 03 leads to the 
following two harmonic problems: 

L [  OIl/ji 0 (02i' q~°)] ;  V20~ ' ' -  1 01]/i'i [61] 
V 2 G ' =  ~ ' L  or/ + 0(~,  ~:' 0n 

The corresponding matching conditions are 
as ~ ~---~ 00, 

0~' - C4 .  ,,, C4 [62] 
2 '  03 = - - ~ - .  

As the two constants are unknown, for the numerical solution we use the following conditions: 
as ~ I--~ o0, 

0'3~ = 0; 0~'~ = 0. [63] 

The two harmonic problems are solved numerically. In a similar fashion as for C3, we find that 

C~ = 0. [64] 

Ca is determined numerically. 
Next, we proceed to find the solution for ~b2. For simplification, we introduce the following 

notation: 

~ = Gr2Pr 2 ~b~'+ Gr2pr ~2~+ Gr 2 ~b~ 'i. [65] 

With the above notation and results, the governing equation for ~k 2 leads to the following three 
problems: 

V4 ff ~, = ~ 00;' 
v' 0~ ' [66] 

o~'O0~ '~ 1 [0(¢o~, qJ ji) q [67] 
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and 

• [68] 
v'~i" '= v' L a(~,n) ~ 0(~,r/) j" 

The matching condition for ~bz is 
a s  ~ b----~ or3, 

~ i  . 

~b ~ = C3 ~Tf'(r/) = 0. [69] 

These three biharmonic problems with homogeneous boundary conditions are also solved 
numerically. 

Since Ca is not zero, the core-region solution is modified by end-wall effects at O(A 3). For the 
expansion to be asymptotic, this term must be less than the first term in the expansion, which is 
unity. From this we obtain the following criteria: 

1 
A 3 Gr2Pr 2 ,~ C--~4" [70] 

Heat transfer across the cold end wall is characterized by the average Nusselt number Nu. Using 
the composite expansion for 0 i, we find the average Nu: 

Nu=I+A2Gr2pr21E(~"+'OO'J ) O , \J ,_ ,  t3~ dr/ +O(A3). [711 

Numerical Modeling 
The finite-difference method is used to solve the harmonic and biharmonic problems. The 

harmonic problem is discretized using a 5-point operator providing 0(62) accuracy, while the 
biharmonic problem is discretized using a 13-point operator. The mesh is stretched along the 
horizontal (x)-direction using an exponential function, and it is stretched along the vertical 
(z )-direction using a cosine function in each layer. IMSL library routines are used to solve the 
resulting linear system of equations. 

The calculations performed for this study assume all layers to be of equal height. We extend the 
end region horizontally towards the core a distance 5 times the middle-layer height. Therefore, the 
computational domain in non-dimensional space is 5.0 (horizontal) x 3.0 (vertical). The mesh in 
each layer is 51 × 51. Further refinement of the mesh was found to have an insignificant influence 
on the results. 

RESULTS 

The problem of buoyant convection in three immiscible layers in a shallow cavity is characterized 
by 15 parameters. These are height ratios, the l0 ratios of the thermophysical properties of the 
upper and lower layers with respect to the middle layer, the aspect ratio, the Gr and the Pr of the 
middle layer. For this investigation we select three systems which are composed of ethylene glycol 
encapsulated above by silicone oils (SO; 1, l0 and 100 cSt) and below by fluorinert liquids (FC-75, 
FC-70, FC-71). The thermophysical properties of these liquids are listed in table 1. 

We select three combinations: (i) SO i0 cSt/ethylene glycol/FC-70; (ii) SO ! cSt/ethylene 
glycol/FC-75; and (iii) SO 100 cSt/ethylene glycol/FC-71. The ratios of the thermophysical 
properties for these systems are listed in table 2. Case (i) represents "equal" viscosity encapsulation, 
i.e. encapsulant viscosities are the same order of magnitude as the middle layer. Case (ii) represents 
low viscosity encapsulation, i.e. encapsulant viscosities are an order of magnitude smaller than the 
middle layer. Case (iii) represents high viscosity encapsulation. The core-region flow in these systems 
has recently been investigated by Prakash & Koster (1993) Here, we concentrate on the flow in 
the cold end-wall region. 

The "equal" viscosity encapsulation case is of interest because the driving forces for convection 
in the three layers are of comparable magnitude, as illustrated by the Gr values which are of 
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Table 1. Fluid properties 

Coeff. 
Kinematic Dynamic Thermal Specific Thermal of expansion 

Density viscosity viscosity conduct, heat(~25°C diffusivity x 10 s 
Fluids (g/cm 3 ) (cm2/s) (g/cm/s) (W/cm-K) (J/g-K) (cm2/s) ( 1/K) Pr 

Ethylene glycol I . I IE+00  1.54E-01 1.72E-01 2.58E-03 2.39E+00 9 .67E-04 6 .20E-04 1.59E+02 
FC-75 1.76E+00 8 .00E-03 1.41E-02 6 .30E-04 1.05E+00 3.43E-04 1.40E+02 2.33E+01 
FC-70 1.94E + 00 1.34E- 01 2 .60E-  01 7.00E- 04 1.05E + 00 3.44E- 04 1.00E + 02 3.89E + 02 
FC-71 1.92E+00 7.30E-01 1.40E+00 7.10E-04 1.05E+00 3.54E-04 1.20E+02 2.06E+03 
Dow 200-1.0 8.16E-01 1.00E-02 8.16E-03 1.00E-03 1.72E+00 7.17E-04 1.34E+02 1.39E+01 
Dow 200-10.0 9.35E-01 1.00E-01 9 .35E-02 1.34E-03 1.51E+00 9 .51E-04 1.10E+02 1.05E+02 
Dow200-100.0 9.64E-01 1.00E+00 0.64E-01 1.55E-03 1.47E+00 1.09E-03 9.30E+01 9.17E+02 

comparable magnitude in all three layers (see table 2). Streamlines and temperature profiles in the 
cold end-wall region are shown in figures 2(a) and (b). The criteria of [70] for this case becomes 

A 3 Gr2pr 2 ,~ 16,700 [72] 

and the average Nu at the end wall is 

Nu = 1 + 4.941 • 10 -5 A 2 Gr2pr 2. [73] 

The flow in the two encapsulant layers is very similar. But the flow in both encapsulants is much 
stronger than in the middle layer. The flow in the middle layer is partially entrained by the 
encapsulants. A weak buoyancy-induced roll, with downflow along the cold wall, forms at 
mid-height in the middle layer. This buoyancy roll is bounded by the counter-rotating non-sym- 
metric flows induced by the encapsulant layers, and does not contact the encapsulant layers. The 
temperature in the middle layer remains in a nearly conductive state. In the vicinity of the end wall, 
isotherms are not orthogonal to the interfaces, therefore heat flows vertically across the interfaces. 
Away from the end walls, the isotherms become nearly orthogonal to the interfaces and the heat 
flow across the interfaces becomes negligible as the core region is approached. 

For the low viscosity encapsulation case, the flow streamlines are shown in figure 3. The flow in 
both encapsulant layers is the characteristic buoyancy cell. The flow in the encapsulants is so strong 
that through mechanical coupling across the interfaces it completely entrains the middle layer. The 
buoyancy-induced flow in the middle layer is completely overcome, and a weak counter flow 
develops. The criteria of [70] for this case is 

A 3 Gr2Pr 2 ,~ 65 [74] 

and the average Nu at the end wall is 

N u = 1 + 1 . 4 4 8 . 1 0  2A2Gr2pr2. [75] 

The temperature profile for this case is similar to that shown in figure 2(b) for the equal viscosity 
encapsulation case, and is very close to the conductive state. 

Flow streamlines for the high viscosity encapsulation case are shown in figure 4. This case is of 
special interest due to its relevance to the encapsulated float zones where encapsulant liquids are 
significantly more viscous than the electronic melt. Strong buoyancy-driven flow is apparent in the 
middle layer. To satisfy continuity across interfaces, very thin interfacial rolls develop in the 
comparatively lower viscosity middle layer. The vertical extension of the lower interfacial roll is 

Table 2. Ratios of the thermophysical properties 

Kinematic Dynamic Thermal Specific Thermal Coeff. of 
Density viscosity viscosity conduct, heat diffusivity expansion Pr 

Two layers ratio ratio ratio ratio ratio ratio ratio ratio 

SO lcSt/Eth Gly 0.7325 0 . 0 6 4 9  0.0476 0.3900 0.7178 0.7416 2.1613 0.0876 
SO 10 cSt/Eth Gly 0 .8393  0.6494 0.5450 0.5200 0.6303 0.9828 1.7742 0.6607 
SO 100 cSt/Eth Gly 0 .8654 6.4935 5.6192 0.6013 0.6163 1.1273 1.5000 5.7605 
FC-70/Eth Gly 1.7415 0.8701 1.5153 0.2717 0.4377 0.3560 1.6129 2.4444 
FC-71/Eth Gly 1.7235 4.7403 8.1699 0.2756 0.4377 0.3661 1.9355 12.9466 
FC-75/Eth Gly 1.5799 0.0519 0.0821 0.2446 0.4377 0.3548 2.2581 0.1464 
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larger than the upper interfacial roll, reflecting the different viscosities of the encapsulants. 
Although the flow patterns in the two layers are different, the flow in both encapsulant layers is 
the characteristic buoyancy roll. An "eye" is detected in the upper layer and not in the lower layer. 
The criteria of [70] for this case is 

A 3 Gr2pr 2 ,~ 270,000 [76] 

and the average Nu at the end wall is 

Nu = 1 + 2.949.10 -6 A 2 Gr2pr 2. [77] 

The temperature distribution for this case is also similar to that shown in figure 2(b) for the equal 
viscosity encapsulation case, and is also very close to the conductive state. 

CONCLUSION 

The problem of convective flow in multiple immiscible liquid layers in a differentially heated 
shallow cavity with rigid and insulated upper and lower boundaries has been investigated. Cormack 
et al. (1974a) applied the method of matched asymptotic expansions to determine the convective 
flow in a differentially heated shallow cavity containing a single liquid. Flow in multilayer systems 
is determined by an extension of CLI's theory. We restrict this study to three distinct triple-layer 
systems. 

In snallow cavities, with aspect ratios much smaller than unity, the temperature drop occurs 
through the core of the cavity, while the end regions play a passive role, and simply act to turn 
the flow around. In such cavities, the mechanical interaction of multiple liquid layers across the 
interfaces has been investigated. A criterion establishing the limits for this flow regime has been 
established for each of the three systems considered. This criterion and the ensuing flow patterns 
are strongly dependent on the thermophysical property ratios of the encapsulant liquids relative 
to the encapsulated liquid. 

A comparison between CLI's solution for a single layer with rigid upper and lower boundaries 
and the encapsulated middle-layer solution shows that encapsulation is found to have a significant 
influence on the flow pattern and the heat transfer rate. The encapsulants provide asymmetric 
interfacial boundaries for the middle layer. Across these boundaries, the encapsulants and the 
middle layer are thermally and mechanically coupled. Thermal coupling between the layers lead 
to vertical heat transfer between the layers, particularly near the end walls. Mechanical coupling 
between the liquid layers results in a middle-layer flow which, depending on the encapsulant 
viscosities, is either completely entrained by the outer encapsulants and is counter to the buoyancy 
flow, or is comprised of as many as two or three recirculation cells. In contrast, CLI's flow solution 
is always composed of a single buoyancy recirculation cell. 

As anticipated, the middle-layer flow with high viscosity encapsulation approaches CLI's 
single-layer flow. For the high viscosity encapsulation case, the heat transfer rate as depicted by the 
end-wall Nu also approaches that for CLI's single layer. With low and "equal" viscosity 
encapsulation, the middle-layer flow is entrained by the outer encapsulants. Entrainment of the 
middle layer is sufficiently strong that it overpowers the buoyancy flow. As buoyancy and 
entrainment effects compete in the middle layer, the flow in the middle layer is reduced. Although 
the aspect ratio and the Gr considered in this study are not directly relevant for crystal growth 
applications, results of this analysis indicate that liquid encapsulation has the potential to reduce 
convective flow in the encapsulated melt layer. 
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